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The poynting theorem calculates the flux of  


S = E x H 










(1)

over a closed surface and shows it to be the decrease of stored electromagnetic energy 


-(/(t (1/2  (oE2  + 1/2 B2/(o)








(2)

inside the surface. From this we concluded that the poynting vector S represents the flux of electromagnetic energy:  power/area = energy/area/time across a surface. 

When we represent E and H by time-varying complex fields like exp(i k(r - i(t), the time averaged poynting vector may be written


<S> = 1/2 Re(E x H*)









(3)

We wish to calculate radiated power from antennas, and atoms (scattered radiation), and for both we will want to evaluate


Paverage, total radiated =  <Ptotal radiated>  = ( <S>( dA = ( <S>( r^ r2 d(,



(4)

where dA is an area element of a closed surface. This surface is usually taken as a sphere of very large radius r surrounding the radiating body. d( is an element of solid angle.  An element of solid angle is defined as projection of some area dA onto a sphere of radius 1 (a unit sphere)


d( = dA( /r2,










(5)

where r is the distance of d( from the origin, and dA( is the part of dA which lies perpendicular to r.

For a plane EM wave in free space having an electric field of amplitude Eo and a magnetic field of amplitude Bo, we have


Eo = c Bo = c (o Ho









(6)

Then the time averaged poynting vector can be written


<S> = 1/2 Re (Eo x Ho*) = 1/2 |Eo|2 / (c(o) = 1/2 |Bo|2 (c/(o)




(7)

The instantaneous maximum power is of course twice the time-averaged power;  Smax = 2 <S>. 

We should note that the integral in (4) will tend to zero as r goes to infinity if Eo or Bo drops off more sharply than 1/r.  For Eo ( 1/r2, for example, the integral in (4) would be proportional to 1/r2 and would vanish as r went to infinity. So the 'radiation' fields, those which will transmit finite power out over very large r, fall fall off like 1/r, but not any faster. The other fields, falling off faster, are referred to as 'near' fields, and play a role in what happens close to the antenna or the atom. Mostly, we will ignore these near fields and concentrate on the 'far' fields, the 'radiation fields'.

Now we will be calculating radiated power by finding the current density J, and from this calculating the vector potential A. Both E and B depend on A:


B = curl A










(8)


E = -(A/(t - (V,









(9)

where V is the scalar potential. (The equation for E follows from curl E = -(B/(t.) So from the vector potential A and the scalar potential V we can calculate E and B and then S, and finally the radiated power. Notice in (7) that we can calculate radiated power either in terms of E or B. So if we use (8) to calculate B, we don't need to worry about the scalar potential V in calculating E.

We will start with the vector potential A , evaluated at the retarded time (Griffiths 10.19. p. 423):

   A(r,t)  =( (o/4( )  ( J (r',t')/(r – r'( d( ,  (d( = volume)





(10)

and t' = 'retarded time' = t-(r – r'(/c. [ r is the field coordinate, where the observer is located, and r' is the source coordinate, which runs over the region where the currents are flowing.]   Since we will want to be far away from the source to calculate radiated power ( r >> r') we will want to expand the denominator:


1/|r-r'|= (r2+r'2 - 2rr' cos ()-1/2  ( 1/r (1 + r'/r cos ( + ...)




(11)

This is Griffiths' approximation 1 on p. 445 and 455.  If we want to avoid 1/r2 fields, we must only keep the leading term in this approximation to Eq. (10):


A(r,t)  =( (o/4(r )  ( J (r',t') d( ,  (d( = volume)





(12)

We will confine ourselves to current density J only in the z-direction, and always oscillating sinusoidally. Thus, the vector potential  A  will always have only a z-component.


J(r',t') = z^ J(z')e-i((t-(r – r’ (/c)








(13)
When r>>r',  (r – r( (/c  is approximately equal to  (r - z' cos ()/c, and the propagation vector k (k= (/c), is in the direction of r.  In the denominator of A, we have just seen that we will keep only the leading term, r.  Keeping higher powers of r in the denominator results in non-radiating fields which fall off faster than 1/r. For r >> r' we find that

J(r',t')= z^ J(z')e-i(( t-(r-z’ cos( )/c) = z^ J(z')e-i(t e-ik(r-z’ cos( ) = (r^ cos ( - (^ sin () J(z')e-i(t eik(r-z’cos( )   (14)

J is in the z-direction only, and has r and ( components, but no ( component. Same for A, which depends on J. The situation is symmetric in (, so there is no (-dependence; all ( derivatives vanish.

For the magnetic field B we take the curl of A, which has J inside the integral.

Curl A = r^/(r sin () [((A( sin ()/(( - ((A()/((] +(^/r (1/(sin ()((Ar)/((  -((rA()/(r)  + (^/r ( ((rA()/(r - ((Ar)/(()   (15)
The first term in the curl vanishes altogether. This is just as well, because a radial component of E or B would be longitudinal, and we pretty much know that E and B are transverse to r. The second term is also gone. From Eq. (12), we see that A already contains a 1/r term in the denominator. In the third ((^) term the 1/r (Ar/(( introduces another 1/r factor, making this term fall off at least like 1/r2, so it won't give a radiation field. The term of interest (the last thing we've got) is 1/r (/(r(rA(). This derivative must not introduce another 1/r or we are sunk. In Eq. (12) there is a factor of exp(ikr -iz'cos () in the numerator, and when the r-derivative hits this we get it back multiplied by ik. This will not give another factor of 1/r, and thus it will give the 'radiation' field. 

       curl [z^ exp(ikr)/r] = (^ (/(r (- sin ( exp(ikr)/r ) ( -(^ ik sin ( exp(ikr)/r,    


(15a) 

Since  (^ sin ( = - k^ x z^,
 we can rewrite (15a) as 


curl [z^ exp(ikr)/r]  = ik x z^ exp(ikr)/r 






(16)

In the radiation zone, where r >>  (, and r >> (antenna length), the magnetic field is, for antenna current oscillating along the z-axis 


Brad = ik x z^ exp(ikr-i(t)/r  ((o/4() ( dz' J(z') exp(-ik z' cos ()


(17)

The time-averaged poynting vector <S> is 1/2 Re(ExH*), H = B/(o, and in the radiation zone  

E = c B x k^ .   [ Note that (oc = (((o/(o) = 377 ( . ] Thus, from (7)


<S> = r^ c/(2(o) B(B*  = r^  c/(2(o) (curl A(2.





(18)

The angle between z^ and k^ is (, so   (curl A(  = | ((o k sin ( /(4(r)) ( J(z') e-ikz' cos ( d( | , and


<S> = r^  c/(2(o) (((o k sin ( /(4(r))  ( J(z') e-ikz' cos ( d( (2.




(19)

Units: (oc : ohms, (k/r)2 :m-4,  (J d()2 : amp2m2. Overall dimensions:  amp2ohms/m2 = watts/m2
Dipole radiation.

For dipoles, kz' << 1 because the dipole length is much, much smaller than a wavelength. For dipoles, we wish to show that 


( J d( = dp/dt, where  p = po e -i(t   = dipole moment. 




(20)

One way is to imagine a sinusoidally oscillating dipole with a charge +qo having displacement 

D/2 exp(-i(t), and a charge –qo with a displacement –D/2 exp(-i(t).  J = (v, and (d( =dq, so   ( J d( = q+v+ +q-v- . The negative charge has a negative velocity so we have

( J d( = qo d/dt(D exp(-i(t)) = -i( qoD exp(-iwt) = dp/dt, where p = qoD exp(-i(t) .
(21)

Another way to show (20) is {Griffiths, p. 444} to have two tiny spheres separated by D one with a charge qo exp(-i(t) and the other with a charge –qoexp(-i(t). The current in a thin wire connecting them would have to be dq/dt = -i( qo, and ( J d( = ( I dz’ = -i( qo exp(-i(t) –D/2( D/2dz’  = -i(qoD exp(-i(t). 

Then              

( J(z')d(  =  dp/dt   =-i( p   = - i(  po. = -ik c z^ po .





(22)

Brad is the curl of A , and  A = ((o/(4()) exp(ikr)/r {-ik c z^ po } From Eq. (16) we know that

curl [z^ exp(ikr)/r]  = ik x z^ exp(ikr)/r . This means that 



Brad = ik x z^ po (-ikc) ((o/4() exp(ikr)/r.






(23)

Notice that we have the dipole moment as a vector po in the formula for B, saying that B is perpendicular to r^ and po.  Then we clean up a little and have


Brad = +(k^ x po) k2 exp(ikr)/r  (c(o/4()  






(24)

This may be rewritten in Griffiths' notation to give the equivalent of Eq. 11.19, p. 447


Brad = -(^ sin ( po ck2 (o exp(ikr-i(t)/(4(r).






(24a)

Then from (7) and (24) we get


 <S> = r^ (c(o/2) (k2 c po sin (/(4(r))2 .    






(25)

Another way of writing this is

 
 <S> = r^ (c(o /2) (k^x po)((k^x po*)(k2 c /(4(r))2 .    




(26)                   

To re-write (26) in terms of the acceleration a, we would use po = qx = qs exp(-i(t). Then, noting that

( = kc, and

 po(( = qx(( = -(2 po = q a








(27)
we can re-cast (26) as

<S> = r^ ((oq2/2c) (k^x a)((k^x a*) /(4(r)2 = r^ (k^x a)((k^x a*) q2/(8(r2c3) /(4((o)  

(28) 

This comes into play when we want to write the radiation from an accelerating charge.  

Total Radiated Power by a Dipole. We must integrate <S>  ( r^ dA over  a sphere of radius r to obtain the total radiated power. The element of area on a sphere in spherical coordinates is dA = r2 sin ( d( d( , or dA = r2 d(. (d( is an element of solid angle). With no ( dependence, this becomes 2 ( r2 sin ( d(, and when we integrate (26) for <S> we find

<Ptotal> = (c(o /2) k4 c2 po2  2( 0(( d( sin ( (1-cos2 (). 




(29)

Letting x = cos (. the integral is that of  -1(1dx(1-x2) = 4/3. Thus the integral of sin2 ( d( is 8(/3, and

<Ptotal> = (c(o /(12()) k4 c2 po2 . 
{ Griffiths' 11.22, p. 448 }



(30)  

Dipole radiation characterizes Rayleigh scattering of light in the sky, and goes like the inverse fourth power of the wavelength (k4).

To take (29) over to a formula for accelerating charges, wecan use (27) to substitute for po in (30). This lets us see if it agrees with the famous Larmor formula for instantaneous radiated power from an accelerating (nonrelativistic) charge qo

P = (2/3)(a2/c3) ke qo2  ,








(31)

where ke = 1/(4((o).  Doing this, we find { See Griffiths' 11.61, p. 458 or 11.70 }

<Ptotal> = (c(o /(12()) k4 c2 (qa/(2)2 = (o q2a2/(12(c) 




(32)

Do Eqs (31) and (32) agree? 

Another tack would be to just integrate (28) over a large sphere to try get (32). It's already got accelerations in it, though for dipoles.

Thomson Scattering Cross-section. 

If we have an incident plane wave electric field Eo acting on an electron of charge q and mass m we get an acceleration a = qEo/m. Putting this in (32) gives ( noting q = qo)


<Ptotal> = (o (qEo/m )2 q2  /(12(c) .







(33)

The incident time-average poynting vector is <Sinc> = ½ (o c |Eo|2 . The ratio <Ptotal> / <Sinc> has the dimensions of area, and is referred to as the scattering cross-section of the charge q:


(thomson = 8(/3 re2,









(34)

where re = q2/(4((o mc2) and is known as the classical electron radius, around 10-15 m.  This is the scattering cross-section for linearly polarized light.

What about the scattering cross-section with circularly polarized light coming in?  Now there are two perpendicular components of E, 90o out of phase: E = (x^ +iy^) Eo exp(-i(t+ikz). The acceleration will be a = qE/m, as before, but now there are two acceleration components in the x-y plane, 90o out of phase. With linearly polarized light, we had Eo(Eo*, but now we will have


(x^ +iy^) Eo exp(-i(t+ikz)((x^ -iy^) Eo exp(+i(t-ikz) =2Eo2.



(35)

This means the incident poynting vector is twice that of linearly polarized light:  <Sinc> = (o c |Eo|2.

To get the radiated power, we must integrate the radiated intensity over solid angle


<P> = ( <S>( r^ r2 d(








(4)

<S> = r^ (k^x a)((k^x a*) /(8(r2c3) /(4((o) 






(27)

and a = qE/m = qEo/m (x^+i y^). We can rearrange (k^x a)((k^x a*) into

(k^x a)((k^x a*) = k^ ( (a x (k^x a*) = k^(( k^(a(a*) - a* (k^(a) = |a|2 -(k^(a)(k^(a*).
(36)

a(a* = (qEo/m)2 (x^+i y^ )((x^-i y^ ) = 2(qEo/m)2 . k^ is radial; from spherical coordinates it becomes  


k^ = x^ sin ( cos ( + y^ sin ( sin ( + z^ cos (. 





(37)

From this we find

k^(a = qEo/m (x^ sin ( cos ( + y^ sin ( sin ( + z^ cos ()(( x^+i y^), or



(38)

k^(a = qEo/m (sin ( cos ( + i sin ( sin (), and k^(a* = qEo/m (sin ( cos (  -i sin ( sin ().

(39)

Now (36) becomes


<S> = r^ (qEo/m)2 [2 -  sin2( (cos2 ( + sin2 () ] 1/(8(r2c3) /(4((o) 



(40)

When this is simplified we have


<P> = (qEo/m)2 /[1/(8(c3) /(4((o]  ( 2( sin ( d( (1+cos2 (), or



(41)


<P> = 16(/3 (qEo/m)2 /[1/(8(c3) /(4((o)]






(42)

Then (
 = <P>/<Sinc> = {4(/3 (qEo/m)2 /[1/(8(c3) /(4((o)]} /  {(o c Eo2} = 16(/3  re2 . This says the cross-section for circularly polarized light is the same as for linearly polarized light, since <P> is doubled and so is <Sinc>.

Scattering from unpolarized light.  Suppose we bring a beam of linearly polarized light in along the z-axis, its E field lying  in the x-y plane making an angle ( to the x-axis: E = Eo (x^cos ( +y^ sin () .

Then we ask for the radiated power in the (, ( direction. When we do the k^(a calculation above we get

(after a little simplifying) (k^(a) = (qEo/m) sin ( cos((-(). Now (40) becomes


<S> = r^ (qEo/m)2 [1 -  sin2( cos2 ((-()] 1/(8(r2c3) /(4((o) 




(43)

The reason we did the business about ( is so we could average over ( to get the effect of scattering from unpolarized light. When we average over ( { <sin2 (> = 1/2, < sin ( cos (> = 0, etc.) we find


<S> = r^ (qEo/m)2 [1 -  1/2 sin2( ] 1/(8(r2c3) /(4((o) 




(44)

When we compute the scattering cross-section from (43) we still get 8(/3 re2, as before.

Antenna calculations. In each case we supply the current density J(z') and carry out the integral in (7) to determine the time-averaged poynting vector in the radiation zone.

Short (Stub) Dipole antenna of length L.  Here again we will take kz' << 1 (the dipole length is short compared to a wavelength). The integral goes through as before with dipoles, noting that the feed current to two spheres separated by L (as before) is I(z') = -i( qo e-i(t . As before the integral is

i(qoL = iIo L = i( po.  We will substitute for po in (1) and find the total power: 


<Ptotal> = (8(/3)(c (o /2)(k2 Io2 L2 )/(4()2 = ((/3)c((L/()2  Io2 .



(45)

The time-averaged square of the current is Io2/2. The radiated power may be interpreted as 'radiation resistance' Rrad times the time average of the squared current. Then we find that

Rrad =  (L/()2 (2(/3) c(o,  where c(o ( 120(  ohms = 'free space impedance'.

(46)

Rrad ( 80 (2 (L/()2  ohms = 789 ohms (L/()2 .   If L/( = 0.01,  Rrad  would be only around 0.08 ohms, suggesting only a very small percentage of the input power is being radiated (very poor antenna efficiency).

Half-wave and full-wave antenna. This antenna has two halves, each of which has length d/2. The current density must vanish at z'=d/2. It is given by  I(z') = Io sin(kd/2-k(z'() . This is integrated from -d/2 to d/2, in [1] to give <S>.  Then for the total radiated power, one integrates          

Ptotal = integral over solid angle  = <S> ( k^ (r2 d().    The integral over z' is 

(  Io sin(kd/2-k(z'()) e-ikz' cos ( dz'  = 2Io [cos(1/2 kd cos() - cos(kd/2)] /(k sin2 ().


(47)

For HW, you are to show that (  Io sin(kd/2-k(z'()) e-ikz' cos ( dz'  = 2Io [cos(1/2 kd cos() - cos(kd/2)] /(k sin2 ().

Method 1: Look for symmetries in the integral before trying to do it or feed it to Maple. 

Method 2: It can be broken in two parts, 1) 0->d/2 and 2) -d/2->0. For the 2nd part, change the variable to u = -z. Then the two integrals will both run from 0 to d/2 and you can combine them into something decent you can feed to Maple. The magnitude of curl A then becomes

[((o k sin ( /(4(r))] 2Io [cos(kd/2 cos() - cos(kd/2)] /(k sin2 ()].



(48)

The radiation pattern will be symmetric in (, since the antenna is directed along the z-axis. The solid angle element in general is d( = sin ( d( d(, but with ( symmetry this becomes d( = 2( sin ( d(.

Often it is convenient to use x = cos (, then the solid angle integration becomes


<Ptotal> = (c/2() 2(  (2  Io ( /(4())2 -1 ( 1 [ dx (cos(hx)-cos(h))2 /(1-x2 )], or 


(49)


<Ptotal> = Io2/2  c( /(2()   -1 ( 1 [ dx (cos(hx)-cos(h))2 /(1-x2 )] ,



(50)

where h=kd/2. When h=(/2, we have a half-wave antenna. This integration is easily done in Maple, with the following results for half-wave and full-wave antennas:  

<Ptotal> = Io2/2 Rrad = Io2/2 (c(/2()(1.22)  = 73.1 ohms Io2/2    (kd/2=(/2;   d=(/2,   2d=()
(51)

<Ptotal> = Io2/2 (c(/2()(3.32) = 201 ohms Io2/2  (kd/2 = (;   d=(,   2d = 2()


(52)

The radiation resistance of full-wave antenna is almost 3 times that of half-wave antenna, so for the same peak current Io the center-fed full-wave antenna radiates almost 3 times as much power.

HW: Calculate the radiation resistance of a 1 1/2 wave antenna.

Next page for antenna arrays.
Antenna Arrays.  For N identical antennas in a line with center-to-center distance L, each will produce a part of the vector potential in the radiation zone. Each A vector will be shifted in phase from the others 

by an amount


( = k ( L  = kL cos (,  








(53) 


where ( is the angle between k and L. 

We can understand this by recognizing that 




r1
light leaving the sources for the radiation zone


       1

is effectively parallel from each source, as

shown in the sketch at the right




     L

    r2

The factor in outgoing waves from source 1



        2             (r = k^(L

is exp(ikr1) and from source 2 it is exp(ikr2)

When we are far from the sources, the outgoing waves

are effectively plane waves exp(i k(r). Since  r2 = r1+L, then


exp(i k(r2) = exp(i k((r1+L)) = exp(i k(r1) exp(i k(L)

The overall A vector will be   Atotal = A(r,t) + A(r,t) e i(    + A(r,t) e i2(    + ...  [N terms]. 

The resultant A vector is obtained as the sum over i from 0 to N-1 of  exp(i().  This is the sum 

SN = 1 + x + x2 + .. +x N-1, where x = exp(i().  

Multiplying SN by x and then subtracting from SN gives

SN = (xN - 1)/(x-1) = exp(i(N-1)(/2) sin(N(/2)/sin((/2).   Atotal = SN A;  and

(54)            


|Atotal|2  = |SNA|2   = [sin (N(/2)/sin((/2)]2 |A|2   . 





(55) 

For antenna arrays, before we apply equation [4] on page 1, we get Atotal = SN A(r,t). SN doesn't depend on r (it contains only (), so the curl doesn't affect it. When we do the curl of A total, SN tags along, and when the magnitude squared of A is taken, we have the magnitude squared of SN multiplying equation (7).  The factor in (55)  is the same as between N slits in the waves course.

To investigate the k(L factor further, suppose we have two identical antennas whose axes lie in the z-direction, separated by a distance L in the x-direction.  L = x^L, and k^ = r^, a radially outgoing unit vector in spherical polar coordinates.








     z










                  r^









(
r^ = x^ sin ( cos ( + y^ sin ( sin ( + z^ cos (













y








       (






   x

For k(L we now have  kL sin ( cos ( , with the two sources separated along the x-axis by a distance L.

Then for two sources, we have 


A = A + A exp(i() = A exp(i(/2)  (exp(-i(/2) + exp(i(/2) = 2A exp(i(/2) cos((/2).

We could also have gotten this from (54) with N=2 :


S2 = exp(i(/2) [sin (2(/2)/sin((/2)] = exp(i(/2) 2 sin((/2) cos((/2) / sin((/2)=  exp(i(/2)  2 cos((/2) .

A line of N identical antennas spaced L apart, each of which has a poynting vector  


<S1> = r^  c/(2(o) (((o k sin ( /(4(r))  ( J(z') e-ikz' cos ( d( (2.




(19)

will have an overall poynting vector


<Sarray> = r^  c/(2(o) [sin (N(/2)/sin((/2)]2  (((o k sin ( /(4(r))  ( J(z') e-ikz' cos ( d( (2 ,  
(56)

where ( = k(L.



